

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :APPLIED PHYSICS (20HS0849) Course & Branch: B.Tech – CSE ,CSE(CSM), CSE(CIC) & CSIT Year &Sem: I-B.Tech I - Sem.

Regulation: R20

UNIT- I WAVE OPTICS

1	a) State and explain principle of superposition.	[6M] [L1]
	b) Summarizing the importance conditions to get interference.	[6M] [L2]
2	a) Discuss the theory of interference of light due to thin films by reflection with sui	table ray
	diagram.	[4M] [L1]
	b) Derive the condition for constructive and destructive interference in the case of	reflected
	system.	[8M] [L4]
3	a) Describe the formation of Newton's ring with necessary theory with relevant dia	gram and
	derive the expressions for dark and bright fringes.	[9M] [L3]
	b) In a Newton's rings experiment, the diameter of the 5 th ring is 0.30 cm and the d	iameter of
	the 15 th ring is 0.62 cm. Calculate the diameter of the 25 th ring.	[3M] [L4]
4	a) Explain how the wavelength of light sources is determined by forming Newton's	ring.
		[8M] [L4]
	b) In a Newton's rings experiment the diameter of the 8 th ring was 0.35cm and the o	liameter of
	the 18 th ring was 0.65cm. If the wavelength of the light used is 6000A° then find the	radius of
	curvature of the plano-covex lens.	[4M] [L4]
5.	a) Write engineering applications of Interference and diffraction.	[8M] [L3]
	b) A parallel beam of light of 6000 A° is incident on a thin glass plate of refractive	index 1.5
	such that the angle of refraction into the plate is 50°. Calculate the least thickness of	f the glass
	plate which will appear dark by reflection.	[4M] [L4]
6.	a) Define diffraction? Distinguish between Fraunhofer and Fresnel's diffraction? [6]	M][L1&L4]
	b) Distinguish between Interference and Diffraction?	[6M] [L4]
7.	a). Explain the theory of Fraunhofer diffraction due to single slit.	[8M] [L4]
	b). Obtain conditions for bright and dark fringes in single slit diffraction pattern and	l draw
	intensity distribution.	[4M] [L4]
8.	a) Describe Fraunhofer diffraction due to double slit and derive the conditions for p	rincipal
	maxima, secondary maxima and minima.	[8M] [L3]
	b) A plane transmission grating having 4250 lines per cm is illuminated with sodiu	m light
	normally. In the second order spectrum, the spectral lines are deviated by 30° . What	t is the
	wavelength of the spectral line?	[4M] [L4]
9.	a) What is Diffraction grating and explain.	[8M] [L4]
	b) Find the highest order that can be seen with a grating having 15000 lines/inches	. The
	wavelength of the light used is 600nm.	[4M] [L4]

QUESTION BANK 2020

a) Explain the Grating Spectrum?b) Derive the expression for wavelength light by diffraction.

[6M] [L4] [6M] [L4]

UNIT – II

ELECTRON THEORY OF METALS & ELECTROMAGNETIC THEORY

1	a) What are the salient features of classical free electron theory? Derive an expression	on for
	electrical conductivity in a metal?	[8M][L4]
	b) Find relaxation time of conduction electron in metal if its resistivity is 1.54×10^{-8}	2 -m and it
	has 5.8×10^{28} conduction electron/m ³ . Given m= 9.1 x 10^{-31} kg, e= 1.6 x 10^{-19} C.	[4M][L1]
2	a) Describe the electrical conductivity in a metal using quantum free electronic theory	ry.[8M][L3]
	b) Write advantages quantum free electron theory over classical free electron theory	. [4M][L1]
3	a) Write brief note on Fermi Dirac distribution?	[6M][L1]
	b) What is the effect of temperature on Fermi Dirac distribution function?	[6M][L1]
4	a) Define effective mass and derive the expression for effective mass of an electron	in periodic
	potential field.	[8M] [L4]
	b) Evaluate Fermi Function for energy K _B T above Fermi level?	[4M][L4]
5	a) Describe the various sources of electrical resistance in metals.	[6M][L3]
	b) Classify the solids into conductor, semiconductor & insulators based on band the	ory.
		[6M][L2]
6	a) Write a significance of divergence and curl of a vector	[8M][L1]
	b) Find the temperature at which there is 1 1% probability that a state with energy 0.	5eV is
	above Fermi energy.	[4M][L1]
7	a) State and Explain Gauss's Theorem for divergence .	[6M][L4]
	b) State and Explain Stoke's Theorem for curl.	[6M][L4]
8.	a) Explain the Faraday's law and Ampere's law through the Maxwell equations.	[8M][L4]
	b) Write the applications of Faraday's law.	[4M][L1]
9.	Write Maxwell's equations in differential and integral form and derive an expression	for energy
]	flow by electromagnetic waves?	[12M][L1]
10	Explain the propagation of electromagnetic wave in non-conducting media.	[12M][L4]

UNIT – III LASERS AND FIBER OPTICS

1	a) Describe the important characteristic of laser beam?	[6M][L3]
	b) Explain the difference between spontaneous and stimulated emission of radiatio	n? [6M][L4]
2	a) Derive the relation between the various Einstein's coefficients of absorption and	l emission of
	radiation.	[8M][L4]
	b) Explain population inversion?	[4M][L4]
3.	a) Explain the different pumping mechanisms in laser.	[8M][L4]
	b) Mention the important components of laser device.	[4M][L1]
4	a) Describe the construction and working principle of He-Ne Laser with the help o	f a neat
	diagram.	[8M][L3]
	b) Write the advantages of He-Ne laser.	[4M][L1]

QUESTION BANK 2020

5	a) Describe the construction and working principle of NdYAG Laser with the help of diagram.	of a neat [9M][L3]
	b) Calculate the wavelength of emitted radiation from GaAs which has a band gap	of 1.44eV
		[3M][L4]
6	a) Describe the construction of optical fiber	[6M][L3]
	b) Explain the working principle of optical fiber	[6M][L4]
7	a) What is the acceptance angle of an optical fiber and derive an expression for it.	[8M][L1]
b) An optical fibre has a core refractive index of 1.44 and cladding refractive index of	1.40. Find
	its numerical aperture and θ_a .	[4M][L1]
8	a) What is the numerical aperture of an optical fibre and derive an expression for it.	[8M][L1]
	b) An optical fibre has a numerical aperture of 0.20 and cladding refractive index o	f 1.59.
	Determine the refractive index of core and the acceptance angle for the fibre in w	ater has a
	refractive index of 1.33.	[4M][L3]
9.	Explain the classifications of optical fibers based on refractive index profile and mo	ode of
	propagation.	[12M][L4]
10	. a) Describe optical fiber communication system with block diagram.	[7M][L3]
	b) Mention the application of optical fiber in sensors.	[5M][L1]

UNIT – IV SEMICONDUCTORS

1.	a) What is intrinsic semiconductor and explain the formation of extrinsic semicon	ductors
	through doping?	[6M][L1]
	b) Derive the expression for intrinsic carrier concentration.	[6M][L4]
2.	a) What is Fermi level? Prove that the Fermi level is lies exactly in between conduc	ction band
	And valance band of intrinsic semiconductor.	[8M][L4]
	b) Draw the energy band structure of intrinsic semiconductor	[4M][L3]
3	a) Obtain the conductivity of intrinsic semiconductor with relevant expressions?	[8M][L4]
	b) The following data are given for an intrinsic Ge at 300K. Calculate the conduct	ivity
	of the sample? (n_i = 2.4 x10 ¹⁹ m ⁻³ , μ_e = 0.39 m ² -V ⁻¹ S ⁻¹ , μ_p = 0.19 m ² -V ⁻¹ S ⁻¹).	[4M][L4]
4.	a) Define energy band gap and Derive the expression for energy band gap of Intri	nsic
	Semiconductor.	[8M][L4]
	b) The following data are given for an intrinsic Ge at 300K. Calculate the resistivi	ty of the
	Sample? (n_i = 2.4 x10 ¹⁹ m ⁻³ , μ_e = 0.39 m ² -V ⁻¹ S ⁻¹ , μ_p = 0.19 m ² -V ⁻¹ S ⁻¹).	[4M][L4]
5	Explain the formation of p-type and n-type semiconductors with band diagram	[12M][L4]
6	a) Derive the expression for current generated due to drifting of charge carriers in	
	semiconductors in the presence of electric field	[6M][L4]
	b) Derive the expression for current generated due to diffusion of charge carriers i	n
	semiconductors in the absence of electric field	[6M][L4]
7	a) Derive the expression for Einstein relation.	[8M][L4]
	b) Find the diffusion co-efficient of electron in Si at 300 K if $\mu_e = 0.19 \text{ m}^2\text{-V}^{-1}\text{S}^{-1}$.	[4M][L1]
8	a) Describe the Hall Effect in semiconductors.	[8M][L3]
	b) Write the applications of Hall Effect.	[4M][L1]
9	a) Explain the formation of p-n junction.	[4M][L4]
	b) Describe the construction and working mechanism of Photodiode	[8M][L3]

APPLIED PHYSICS

10. a) Describe the construction and working mechanism of LED. [8M][L3] b) Determine the wavelength of LED fabricated by the CdS material with band gap of 2.42 eV. [4M][L3] UNIT-V SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS 1. a) Prove that super conductor is a very good diamagnetic material. [8M][L4] b) Write the properties of Superconductors. [4M][L1] 2. a) Explain the Type-I and Type-II superconductors. [7M][L4] b) What is Meissner effect? [5M][L1] 3. a) Explain BCS theory of superconductors. [9M][L4] b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead $T_c = 7.18K$, Ho=6.5 x 10 ⁴ A/m. [3M][L4] 4. a) What is flux quantization? [8M][L1] b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
b) Determine the wavelength of EED fabricated by the Cd3 matchar with band gap of 2.42 eV. [4M][L3] UNIT-V SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS 1. a) Prove that super conductor is a very good diamagnetic material. [8M][L4] b) Write the properties of Superconductors. [4M][L1] 2. a) Explain the Type-I and Type-II superconductors. [7M][L4] b) What is Meissner effect? [5M][L1] 3. a) Explain BCS theory of superconductors. [9M][L4] b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead $T_c = 7.18K$, Ho=6.5 x 10 ⁴ A/m. [3M][L4] 4. a) What is flux quantization? [8M][L1] b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
UNIT-V SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS 1. a) Prove that super conductor is a very good diamagnetic material. [8M][L4] b) Write the properties of Superconductors. [4M][L1] 2. a) Explain the Type-I and Type-II superconductors. [7M][L4] b) What is Meissner effect? [5M][L1] 3. a) Explain BCS theory of superconductors. [9M][L4] b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead Tc = 7.18K, Ho=6.5 x 10 ⁴ A/m. 4. a) What is flux quantization? [8M][L1] b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
</td
Set Excertion Decription And Decription And Decription And Decription Structures of Constrained Structures of Constrained Structures of Constrained Structures (SM) [L4]1. a) Prove that super conductor is a very good diamagnetic material.[8M][L4]b) Write the properties of Superconductors.[4M][L1]2. a) Explain the Type-I and Type-II superconductors.[7M][L4]b) What is Meissner effect?[5M][L1]3. a) Explain BCS theory of superconductors.[9M][L4]b) Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead $T_c = 7.18K$, Ho=6.5 x 10 ⁴ A/m.[3M][L4]4. a) What is flux quantization?[8M][L1]b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
1. a) Prove that super conductor is a very good diamagnetic material. $[8M][L4]$ b) Write the properties of Superconductors. $[4M][L1]$ 2. a) Explain the Type-I and Type-II superconductors. $[7M][L4]$ b) What is Meissner effect? $[5M][L1]$ 3. a) Explain BCS theory of superconductors. $[9M][L4]$ b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead $T_c = 7.18K$, Ho=6.5 x 10^4 A/m. $[3M][L4]$ 4. a) What is flux quantization? $[8M][L1]$ b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
b) Write the properties of Superconductors. $[4M][L1]$ 2. a) Explain the Type-I and Type-II superconductors. $[7M][L4]$ b) What is Meissner effect? $[5M][L1]$ 3. a) Explain BCS theory of superconductors. $[9M][L4]$ b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead $T_c = 7.18K$, Ho=6.5 x 10 ⁴ A/m. $[3M][L4]$ 4. a) What is flux quantization? $[8M][L1]$ b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
2. a) Explain the Type-I and Type-II superconductors. $[7M][L4]$ b) What is Meissner effect? $[5M][L1]$ 3. a) Explain BCS theory of superconductors. $[9M][L4]$ b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead $T_c = 7.18K$, Ho=6.5 x 10^4 A/m.4. a) What is flux quantization? $[8M][L1]$ b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
b) What is Meissner effect? [5M][L1] 3. a) Explain BCS theory of superconductors. [9M][L4] b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead $T_c = 7.18K$, Ho=6.5 x 10 ⁴ A/m. [3M][L4] 4. a) What is flux quantization? [8M][L1] b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
 3. a) Explain BCS theory of superconductors. [9M][L4] b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k. Given for lead T_c = 7.18K, Ho=6.5 x 10⁴A/m. [3M][L4] 4. a) What is flux quantization? [8M][L1] b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
 b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k. Given for lead T_c = 7.18K, Ho=6.5 x 10⁴ A/m. [3M][L4] 4. a) What is flux quantization? [8M][L1] b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
T _c = 7.18K, Ho=6.5 x 10 ⁴ A/m.[3M][L4]4. a) What is flux quantization?[8M][L1]b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
4. a) What is flux quantization? [8M][L1]b) A superconducting material has a critical temperature of 3.7K and a magnetic field of
b) A superconducting material has a critical temperature of 3./K and a magnetic field of
$0.020(T \rightarrow 0.17 - 1.0) = 1.0 $
0.03061 at 0 K. Find the critical field at 2K. [4M][L1]
5. a) Explain Josephson effect in superconductors. [8M][L4]
b) write the applications of superconductors. [4M][L1]
b) Explain the basic principle of percentrials [4M][L1]
b) Explain the basic principle of hanomaterials. [8M][L4]
 a) Explain the concept of Quantum Commencement in nano materials. [ONI][L4] b) Write the applications of panometerials in different fields. [6M][L1]
b) while the applications of hanomaterials in different fields. [OM][L1]
b) Write the mechanical magnetic and optical properties of papomaterials [5M][[1]]
9 a) What are the techniques available for synthesizing nanomaterials? [/M][1]
b) Explain ball milling technique for synthesis of panomaterial? [8M][[4]]
10 a) Explain Sol-Gel technique for synthesis of nanomaterial? [8M][[4]
b) Write advantages of sol-gel process? [4M][1.1]

Prepared by: Dept. of Physics